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Abstract

This paper presents a semi-analytic solution of the moving load problem which is of great interest for the analysis of

multi-span uniform and non-uniform beams subjected to moving forces, such as high-speed trains. The solution is based on

the response of the structure to a unit load circulating at a constant speed of the train. Viscous modal damping is

considered. Using Bernoulli–Euler beam elements with variable cross-sectional properties, the structure is discretized and

the mode shapes are computed using standard procedure. The moving load is represented by a unitary Dirac Delta

function, and the modal loads are obtained in terms of cubic Hermitian polynomials. This leads in a straightforward

manner to the closed-form solution for the unit load in the time domain. The solution is expressed in terms of 10

coefficients per element and per mode, the values of which are independent of the speed of the moving load. Finally, the

response to a series of loads is built simply by adding the contribution of each. The overall procedure is fast and accurate,

depending only on the spatial discretization and the time step selected for evaluating the solution without the need of any

integration step. Numerical tests have been included in order to show the efficiency of this technique.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behaviour of beams under moving loads is of great importance in several fields of engineering,
for instance, the design of road and railway bridges and the analysis of machining processes. Many engineers
and scientists have contributed to the solution of the problem with their innovations, and still the dynamics of
beams when subjected to moving loads is a subject that draws considerable attention of researchers.

The present paper is aimed at the analysis of the response of Bernoulli–Euler beams subjected to flexural
vibrations under the presence of concentrated moving forces. This topic, which is central to the analysis of
railway bridges, has become a particular focus area of research because of the appearance of ballast
destabilization problems in some European high-speed rail lines. The committee D-214 of the European Rail
Research Institute endeavoured to analyse these problems, and some of the conclusions of its work were
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

wðx; tÞ deflection of the beam
pðx; tÞ load function
pkðxÞ k� load of a train, modelled as a set of

concentrated forces
p0 single concentrated load acting on the

beam
v speed of the train
dðxÞ Dirac delta function
le length of element e

E modulus of elasticity of the beam
IðxÞ second moment of area of the cross-

section of the beam
Ie

i ; I
e
j second moment of area of the cross-

section at the beginning and end nodes of
element e

Ae
i ;A

e
j area of the cross-section at the beginning

and end nodes of element e

de
i ; d

e
j equivalent height at the beginning and

end nodes of element e

me
i ;m

e
j mass per unit length at the beginning and

end nodes of element e

g permanent added mass
mðxÞ mass per unit length
yðtÞ time-dependent vector of nodal displace-

ments/rotations
Me element mass matrix
M global mass matrix
MD diagonal global mass matrix
Ke element stiffness matrix
K global stiffness matrix
KD diagonal global stiffness matrix
C matrix containing the generalized eigen-

vectors
feðtÞ vector of element nodal forces
heðvtÞ analytic nodal force vector for a point

load acting on element e

hðvtÞ global analytic force vector for a point
load

qðtÞ time-dependent vector of modal ampli-
tudes

on angular frequency of mode n

zn damping coefficient of mode n

z constant damping coefficient
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reported by two of its members, Frýba [1] and Mancel [2]. These authors pointed out that the occurrence of
intense resonance phenomena associated with flexural oscillations needs further investigation.

Out of many alternatives used in the construction of road and railway bridges, one that is widespread is the
simply supported beam or girder type of construction. With regard to this kind of structures, closed-form
solutions for the moving load problem have been available since the beginning of the 20th century, see Bleich
[3]. This type of solutions are generally in the form of an infinite series. A few terms would suffice for the
computation of displacements because the series normally converges rapidly. However, the same does not
apply to the evaluation of accelerations, bending moments and shear forces. Among recent publications
related to the moving load problem in simply supported beams, the works of Frýba [4,5], Li and Su [6], Yang
et al. [7], Gbadeyan and Oni [8], and Olsson [9] need special mention.

As for continuous beams, Hayashikawa and Watanabe [10] presented a closed-form solution by idealising
the system as a stepped beam (i.e. a beam for which both the cross-sectional and the material properties are
constant over intervals of finite length). The normal modes and natural frequencies were obtained by using the
exact dynamic stiffness matrix. Subsequently, they used a Duhamel-type integration to solve the uncoupled
modal equations. Chen and Li [11] obtained the exact modes from the dynamic stiffness matrix of a damped
Timoshenko beam, and later expressed the equivalent modal loads in terms of complex exponential functions,
thus leading to the closed-form solution of the governing equation in each mode directly. An approach in the
frequency domain was proposed by Henchi et al. [12]. In this method the exact normal modes and natural
frequencies were also obtained from the dynamic stiffness matrix, but then the modal equations were solved
using the FFT algorithm. Nevertheless, as in the works of Hayashikawa and Watanabe [10] and Chen and Li
[11], the approach was limited to the analysis of continuous stepped beams.

A more general method was developed by Dugush and Eisenberger [13], who expressed the normal modes as
an infinite power series, and then computed the natural frequencies from the dynamic stiffness matrix using
the method of bisection. The cross-sectional properties were assumed to follow polynomial variations.
Subsequently, the governing differential equation of each mode was solved using an infinite power series
expansion. Structural damping was not taken into account in the analysis.
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Regarding closed-form solutions for continuous beams, the contribution of Cai et al. [14] should be
mentioned. In this work the solution for an infinite continuous beam resting on periodic rollers and subjected
to moving loads is obtained. By contrast, approximate solutions for continuous beams under moving forces
have been developed by several authors. For example, Wu and Dai [15] proposed a method based on transfer
matrices, Lee [16] used the assumed mode method and modelled the intermediate supports as very stiff springs
and, more recently, Zheng et al. [17] presented a new approach based on modified beam vibration functions.

The methodology proposed in the present paper is semi-analytic. Its purpose is to analyse the flexural
vibrations of the beam in the vertical plane, which is the one defined by the beam and the direction of the loads
at any time. To this end, the beam is spatially discretized using the conventional finite elements with two
nodes. Each node has two degrees of freedom: transverse displacement and rotation. Then, the (approximate)
mode shapes and natural frequencies are computed using standard eigensolution procedure. Finally, the
equivalent modal loads are expressed analytically in terms of the previously computed mode shapes. This leads
to the mathematical expression of the time domain solution for each mode in a straightforward manner.

The approach presented in this paper provides an exact solution of the moving load problem in
Bernoulli–Euler beams discretized with the usual two-noded finite elements with Hermitian shape functions.
In addition, the formulation adopted herein allows for the use of non-uniform beam elements, for which the
area and the second moment of area of the cross-section are assumed to follow linear and cubic variations,
respectively. This is a valuable feature of the method, since a possible variation of the cross-sectional
properties (which is usual in continuous bridges) can be represented more adequately by means of non-
uniform elements than by a stepped discretization.

It should be emphasized that the proposed method, as will be shown later, is fast and robust, and therefore,
circumvents the main disadvantages of the time-stepping schemes normally used in conjunction with the finite
element method.

2. Formulation and semi-analytic solution

2.1. Weak and matrix formulations for a single element

Let ½0;L� be the domain of a Bernoulli–Euler non-uniform beam. The total length of the beam is L. Let
x 2 ½0;L� be the abscissa and t 2 ½0;1Þ the time variable. The governing differential equation for a
Bernoulli–Euler beam subjected to the action of a distributed load pðx; tÞ and neglecting damping effects is
given by

mðxÞ
q2wðx; tÞ

qt2
þ

q2

qx2

q2wðx; tÞ
qx2

EIðxÞ

� �
þ pðx; tÞ ¼ 0, (1)

where mðxÞ stands for the mass per unit length, E is the modulus of elasticity, and IðxÞ is the variable second
moment of area of the cross-section.

Fig. 1 shows the positive sign of the distributed load, shear force, and bending moment. The displacement
function wðx; tÞ is positive in the upward direction.

The single concentrated load traversing the beam at the constant speed v is idealized by means of Dirac
Delta function dðxÞ. Thus, pðx; tÞ ¼ p0dðx� vtÞ represents the effect of a concentrated load p0. At this point,
p (x, t) > 0

p (x, t)

M (x, t) > 0V (x, t) > 0

Fig. 1. Sign convention for the shear force, bending moment, and distributed load.
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two time intervals are considered: ½0;L=vÞ or forced vibrations, when the load is acting upon the beam, and
½L=v;1Þ or free vibrations. During the forced vibration period, Eq. (1) can be rewritten as

mðxÞ
q2wðx; tÞ

qt2
þ

q2

qx2

q2wðx; tÞ
qx2

EIðxÞ

� �
þ p0dðx� vtÞ ¼ 0. (2)

The boundary conditions for this problem are

wðx; tÞjt¼0 ¼ 0 8x 2 ½0;L�;
qwðx; tÞ

qt

����
t¼0

¼ 0 8x 2 ½0;L�. (3)

The weak formulation of the problem defined by Eq. (2) with the boundary conditions given in Eq. (3) is
obtained by multiplying Eq. (2) by a generic test function u�ðxÞ following a double integration by parts.
Particularly, if a conventional finite element approach is adopted, the domain x 2 ½0;L� is subdivided into
elements of length le and Hermitian polynomials are used both as test functions as well as interpolating
functions. Subsequently, the integration by parts of Eq. (2) is carried out over each element. This technique is
widely known and is treated extensively in a number of works, see for instance the monograph by Bathe [18].

A typical beam finite element is shown in Fig. 2. Let i and j be the initial and end points or nodes. Also, let
xe

i and xe
j be the abscissas corresponding to the extreme points, and xe the abscissa relative to the origin of the

element so that xe ¼ x� xe
i . Positive nodal forces and moments are shown in Fig. 2.

In the local reference, the expressions of the four Hermitian polynomials he
nðxÞ; n ¼ 1 to 4, associated to

element e are

he
1ðx

eÞ ¼ 1� 3
xe

le

� �2

þ 2
xe

le

� �3

,

he
2ðx

eÞ ¼ le xe

le � 2
xe

le

� �2

þ
xe

le

� �3
" #

,

he
3ðx

eÞ ¼ 3
xe

le

� �2

� 2
xe

le

� �3

,

he
4ðx

eÞ ¼ le
�

xe

le

� �2

þ
xe

le

� �3
" #

. ð4Þ

Within the element, the function wðx; tÞ is approximated by a cubic polynomial,

wðxe; tÞ ¼
X4
n¼1

ye
nðtÞh

e
nðx

eÞ, (5)

where the physical meaning of the time-varying coefficients is the usual one, i.e. the transverse displacement
and slope at the nodes

ye
1ðtÞ ¼ yiðtÞ; ye

2ðtÞ ¼ yiðtÞ,

ye
3ðtÞ ¼ yjðtÞ; ye

4ðtÞ ¼ yjðtÞ. ð6Þ
p0 �(x e − vt )

F e
j (t)

x e

le

F e
i (t)

ji
M e

j (t)M e
i (t)

Fig. 2. Local reference for element e. Nodal forces and moments.
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The approximate velocity and acceleration are obtained by differentiation of wðxe; tÞ with respect to time to
give

_wðxe; tÞ ¼
X4
n¼1

_ye
nðtÞh

e
nðx

eÞ; €wðxe; tÞ ¼
X4
n¼1

€ye
nðtÞh

e
nðx

eÞ, (7)

where overdots denote time derivatives. Using the four Hermitian polynomials as test functions, and
approximating the transverse displacement by means of Eq. (5), four equations are obtained from the weak
form of Eq. (2)Z le

0

mðxeÞ
X4
n¼1

f €ye
nðtÞh

e
nðx

eÞghe
mðx

eÞdxe þ

Z le

0

X4
n¼1

ye
nðtÞ

d2he
nðx

eÞ

dðxeÞ
2

� �
EIðxeÞ

d2he
mðx

eÞ

dðxeÞ
2

dxe

¼ Fe
j ðtÞh

e
mðl

e
Þ þ F e

i ðtÞh
e
mð0Þ þMe

j ðtÞ
dhe

mðx
eÞ

dðxeÞ

����
le

þMe
i ðtÞ

dhe
mðx

eÞ

dðxeÞ

����
0

� p0he
mðvtÞ, ð8Þ

with m ¼ 1–4.
After evaluation of the integrals contained in Eqs. (8), the solution can be conveniently arranged in matrix

form. For element e, the following linear relationship is obtained:

me
11 me

12 me
13 me

14

me
21 me

22 me
23 me

24

me
31 me

32 me
33 me

34

me
41 me

42 me
43 me

44

0
BBBBB@

1
CCCCCA

€yiðtÞ

€yiðtÞ

€yjðtÞ

€yjðtÞ

0
BBBBBB@

1
CCCCCCA
þ

ke
11 ke

12 ke
13 ke

14

ke
21 ke

22 ke
23 ke

24

ke
31 ke

32 ke
33 ke

34

ke
41 ke

42 ke
43 ke

44

0
BBBBB@

1
CCCCCA

yiðtÞ

yiðtÞ

yjðtÞ

yjðtÞ

0
BBBBB@

1
CCCCCA

¼

Fe
i ðtÞ

Me
i ðtÞ

Fe
j ðtÞ

Me
j ðtÞ

0
BBBBB@

1
CCCCCA� p0

he
1ðvtÞ

he
2ðvtÞ

he
3ðvtÞ

he
4ðvtÞ

0
BBBBB@

1
CCCCCA, ð9Þ

which can also be rewritten in a more compact form as

Me €ye
ðtÞ þ KeyðtÞ ¼ feðtÞ � p0h

eðvtÞ. (10)

The elements of the matrices in Eq. (9) are given by the usual expressions

me
rs ¼

Z le

0

mðxeÞhe
rðx

eÞhe
sðx

eÞdxe,

ke
rs ¼

Z le

0

d2he
rðx

eÞ

dðxeÞ
2

EIðxeÞ
d2he

sðx
eÞ

dðxeÞ
2

dxe, ð11Þ

where r and s run from 1 to 4.
At this point, it should be emphasized that the term heðvtÞ in Eq. (10) is the analytic expression of the unit

load vector for element e.

2.2. Interpolation of the mass per unit length and second moment of area

Different alternatives can be adopted for interpolating the mass per unit length mðxÞ and second moment of
area IðxÞ along the length of an element. In this paper it is assumed that the cross-section of the element is
rectangular. Linear variations of the area and the depth of the section are assumed, leading to a linear
variation of the mass per unit length, and a cubic variation of the second moment of area of the cross-section.

This kind of interpolation proves particularly convenient for applications in bridge design, where mðxÞ and
IðxÞ are defined from the values at the extremes of the element. This is of considerable interest because it
allows possible discontinuities in both functions. Nonetheless, other different variations can be assumed



ARTICLE IN PRESS
A.E. Martı́nez-Castro et al. / Journal of Sound and Vibration 294 (2006) 278–297 283
without loosing the generality of the approach. The variations of the mass per unit length and the second
moment of area are defined as follows:
�
 Mass per unit length:
Let r be the volumetric mass density. The total mass per unit length corresponding to a section consists of
two terms: the mass associated with the self-weight and a permanent added mass which proves useful for
practical applications. Accordingly, the function mðxeÞ is

mðxeÞ ¼ rAe
i þ r

Ae
j � Ae

i

le xe þ g, (12)

where Ae
i is the area of the cross-section at node i of element e (initial area), Ae

j the area of the cross-section
at node j of element e (final area) and g the permanent mass added to the self-weight of the beam.
Eq. (12) can be rewritten more simply if the masses per unit length at the nodes are introduced:

me
i ¼ rAe

i þ g; me
j ¼ rAe

j þ g. (13)

Thus,

mðxeÞ ¼ me
i þ

me
j �me

i

le xe. (14)
�
 Second moment of area of the cross-section

Now a cubic interpolation for the second moment of area of the cross-section is presented here. The
interpolation is based on the use of equivalent rectangular sections. For a rectangular section, the second
moment of area can be expressed in terms of the area and the depth of the beam as follows:

IðxÞ ¼ 1
12

AðxÞ d2
ðxÞ, (15)

where d is the depth of the section.
The equivalent rectangular sections corresponding to the nodes i and j of element e can be derived from the
actual area and second moment of area using Eq. (15). Thus, the depth of these equivalent sections is

de
i ¼

ffiffiffiffiffiffiffiffiffi
12Ie

i

Ae
i

s
; de

j ¼

ffiffiffiffiffiffiffiffiffi
12Ie

j

Ae
j

s
. (16)

Subsequently, linear variations of the area and the equivalent depth over the length of the element are
assumed to be

AðxeÞ ¼ Ae
i þ

Ae
j � Ae

i

le xe; dðxeÞ ¼ de
i þ

de
j � de

i

le xe. (17)

Finally, substituting Eq. (17) into Eq. (15), a cubic variation of second moment of area along the length of
the element is obtained. The expressions of the element mass and stiffness matrix resulting from the above
property variations are shown in Appendix A.

2.3. Assembled formulation

Assembling the element equations (10) in the usual form, the differential equation of motion of the finite
element model of the beam is obtained as

M€yðtÞ þ KyðtÞ ¼ �p0hðvtÞ. (18)

It can be seen, the load term is a vector with an analytic, polynomial expression for t 2 ½xe
i =v;xe

j =vÞ. In what
follows it will be assumed that the load has moved to the next element when t ¼ xe

j =v, and therefore, the right
end of the interval is excluded.

In order to solve Eq. (18), the boundary conditions need to be prescribed. The simply supported boundary
condition is the most usual one in the analysis of multi-span beams, but others are also possible in practice,
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such as both ends fixed or cantilever. After applying the boundary conditions, the new reduced mass and
stiffness matrices define the problem to be solved. For simplicity, in what follows the reduced matrices will be
referred to using the same symbols as the non-reduced ones, and distinction will be made when it is necessary.

3. Solution of the equations of motion

Eq. (18) is a matrix system of linear differential equations with constant coefficients and an analytic right-
hand term (load vector) for each time interval ½xe

i =v;xe
j =vÞ. After applying the boundary conditions, this

equation can be solved through a change of basis. The new basis is given by the generalized eigenvalue
problem described by

ð�o2Mþ KÞyðtÞ ¼ 0) jK� o2Mj ¼ 0 (19)

o being the generalized eigenvalue. Let qðtÞ be the time-dependent modal amplitude vector, related to yðtÞ

through the matrix C as follows:

yðtÞ ¼ CqðtÞ, (20)

where each column of C contains the corresponding generalized eigenvector. Premultiplying Eq. (18) by CT

and changing from yðtÞ to qðtÞ one obtains

CTMC€qðtÞ þ CTKCqðtÞ ¼ �p0C
ThðvtÞ. (21)

As it is known, the matrix products in the left-hand terms of Eq. (21) are diagonal as a result of the
orthogonality property of the modes. Therefore, Eq. (21) becomes

MD €qðtÞ þ KDqðtÞ ¼ �p0C
ThðvtÞ. (22)

The problem can now be solved for a unitary load, p0 ¼ 1 and, assuming linear behaviour of the system, the
solution for a different load can be computed multiplying the unitary solution by the actual value of p0.
Premultiplying Eq. (22) by the inverse of the diagonal mass matrix, and letting p0 ¼ 1 yields

€qðtÞ þM�1D KDqðtÞ ¼ GhðvtÞ, (23)

where

G ¼ �M�1D CT. (24)

With the exception of the time intervals when the load is applied in one element having a restrained degree of
freedom, the elements of vector hðvtÞ in the right-hand term of Eq. (23) are zero in all but four rows. These
four rows correspond precisely to the degrees of freedom of the nodes i; j belonging to the element e where the
moving load is applied. Thus, the differential equation for the nth mode can be expressed as

€qnðtÞ þ o2
nqnðtÞ ¼

X4
m¼1

Ge
nmhe

mðvtÞ, (25)

where on is the frequency of the nth mode, Ge
nm represent the coefficients of the nth row of matrix G

corresponding to element e, and the mth Hermitian function of the element; such Hermitian function is
represented by he

m.
If the existing boundary conditions eliminate a certain degree of freedom of the load vector, a zero value is

given to the appropriate coefficient Ge
nm, thus preserving the generality of the approach.

At this point it is possible to include the damping effects by means of a modal damping ratio zn (the
damping ratios for each mode are usually computed from experimental tests carried out in real structures). In
this way Eq. (25) transforms into

€qnðtÞ þ 2znon _qnðtÞ þ o2
nqnðtÞ ¼

X4
m¼1

Ge
nmhe

mðvtÞ. (26)
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The solution of Eq. (26) can be obtained in closed-form, but the analytic expression needs to be defined
piecewise for every different time interval ½xe

i =v; xe
j =vÞ. Every time the load crosses from one element to the

next one, the closed-form expression of the solution is redefined.
Consider that the load is moving in element e, having initial and final nodes i and j. In order to solve Eq.

(26), a change of the origin of the time variable is introduced. Let t be the time relative to the instant when the
load passes over the initial node i ðt ¼ t� xe

i =vÞ. Then, the initial conditions can be specified in the form

qnðt ¼ 0Þ ¼ q0
n; _qnðt ¼ 0Þ ¼ _q0

n, (27)

with t 2 ½0; le=vÞ.
The solution can now be obtained adding the solution of the homogeneous equation plus a particular

solution

qnðtÞ ¼ qh
nðtÞ þ qp

nðtÞ. (28)

The mathematical expressions of these solutions are the following:

qh
nðtÞ ¼ e�znontðAn cosðod

ntÞ þ Bn sinðod
ntÞÞ, (29)

where

od
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðznÞ

2

q
(30)

and

qp
nðtÞ ¼ að0Þn þ að1Þn vtþ að2Þn ðvtÞ

2
þ að3Þn ðvtÞ

3. (31)

Coefficients að0Þn ; a
ð1Þ
n ; a

ð2Þ
n ; a

ð3Þ
n can be obtained from the expressions below:

að0Þn ¼ v3að01Þn þ v2að02Þn þ vað03Þn þ að04Þn ,

að1Þn ¼ v2að11Þn þ vað12Þn þ að13Þn ,

að2Þn ¼ vað21Þn þ að22Þn ,

að3Þn ¼ að31Þn . ð32Þ

In the above expressions, the dependence of the speed v has been isolated using the following 10 coefficients:

að01Þn ¼ �
24znð2ðznÞ

2
� 1Þð2Ge

n1 � 2Ge
n3 þ ðG

e
n2 þ Ge

n4Þl
e
Þ

ðle
Þ
3
ðonÞ

5
,

að02Þn ¼ �
2ð4ðznÞ

2
� 1Þð3Ge

n1 � 3Ge
n3 þ ð2Ge

n2 þ Ge
n4Þl

e
Þ

ðle
Þ
2
ðonÞ

4
,

að03Þn ¼ �
2Ge

n2zn

ðonÞ
3
,

að04Þn ¼
Ge

n1

ðonÞ
2
,

að11Þn ¼
6ð4ðznÞ

2
� 1Þð2Ge

n1 � 2Ge
n3 þ ðG

e
n2 þ Ge

n4Þl
e
Þ

ðle
Þ
3
ðonÞ

4
,

að12Þn ¼
4znð3Ge

n1 � 3Ge
n3 þ ð2Ge

n2 þ Ge
n4Þl

e

ðle
Þ
2
ðonÞ

3
,

að13Þn ¼
Ge

n2

ðonÞ
2
,

að21Þn ¼ �
6znð2Ge

n1 � 2Ge
n3 þ ðG

e
n2 þ Ge

n4Þl
e
Þ

ðle
Þ
3
ðonÞ

3
,
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að22Þn ¼ �
3Ge

n1 � 3Ge
n3 þ ð2Ge

n2 þ Ge
n4Þl

e

ðle
Þ
2
ðonÞ

2
,

að31Þn ¼
2Ge

n1 � 2Ge
n3 þ ðG

e
n2 þ Ge

n4Þl
e

ðle
Þ
3
ðonÞ

2
. ð33Þ

The coefficients can now be computed and stored initially for the entire mesh. For a given speed of the moving
load, the coefficients of the particular solution are computed for each element using Eq. (32). The coefficients
of the homogeneous solution (29) are obtained from the initial conditions (27) as follows:

An ¼ q0
n � a0n,

Bn ¼
_q0

n þ znonAn � að1Þn v

od
n

. ð34Þ

So, the complete closed-form solution is built piecewise from a set of analytic functions, one per element. For
the initial time, t ¼ 0, at-rest conditions are normally imposed:

qnðt ¼ 0Þ ¼ 0; _qnðt ¼ 0Þ ¼ 0. (35)

For the following elements, the initial conditions for element eþ 1 are given by the end values of element e.
Thus

qnðtÞj
eþ1
t¼0 ¼ qnðtÞj

e
t¼le=v,

_qnðtÞj
eþ1
t¼0 ¼ _qnðtÞj

e
t¼le=v. ð36Þ

During the time interval in which the load traverses the structure, the particular and homogeneous solutions
will have to be added, giving rise to the forced vibration and free vibration contributions, respectively.
Conversely, after the load has reached the last node of the beam only the contribution of the homogeneous
solution will remain.

Two aspects are remarkable at this point. First, in Eq. (29) the introduction of the local time t leads to
bounded exponential terms, which is crucial for computational purposes. This is a well-known problem: despite
existing analytic solutions for some cases of single or multispan beams, a spatial mesh must be introduced in order
to avoid numerical problems with exponential terms. Secondly, Eqs. (36) entail that the modal amplitudes qn and
their derivatives are continuous, even if they are defined piecewise; considering that the load term in Eq. (26) is also
continuous because it represents the modal shape multiplied by the load, it can be concluded that a continuous
modal acceleration is obtained from the semi-analytic procedure presented in this paper.

4. Solution for a set of moving loads

For a set or series of concentrated loads moving at a constant speed v, the solution can be obtained by
superposition. One of the most demanding situations from a computational point of view is the parametric
analysis of a beam over a wide range of speeds; in addition, real trains usually present a large number of loads
whose effects have to be superimposed. In this regard, the solution proposed herein demonstrates three main
characteristics:
�
 It is easy to store, say, 10 coefficients per element and per mode.

�
 The closed-form expressions are computed accurately.

�
 It is easily adaptable for different speeds of the train.
For computing purposes, the solution presented in Section 3 can be stored in two steps:
(1)
 Ten coefficients per element and per mode given by Eqs. (33). These coefficients do not depend on the
speed, so they can be stored initially for the entire mesh and for all the modes considered in the analysis.
(2)
 For any given speed, the coefficients of the particular solution (að0Þn , að1Þn , að2Þn and að3Þn ) and of the
homogeneous equation (An and Bn) are calculated and stored for each mode and element.



ARTICLE IN PRESS
A.E. Martı́nez-Castro et al. / Journal of Sound and Vibration 294 (2006) 278–297 287
At a fixed time, the loads that contribute to the response of the beam are those acting upon the structure and
those that already have left it. The computation of the contributions of the loads that are travelling over the

structure requires a fixed number of floating point operations per load. On the contrary, for the ensemble of
loads that have left the beam it proves to be more convenient to gather all their contributions in a unique
damped sinusoidal function, similar to Eq. (29). This can be done by updating the coefficients of this function
for each mode, say An and Bn, every time a new load abandons the structure.

5. Numerical tests

In this section a set of numerical results is presented for illustration purposes to demonstrate the semi-
analytic approach proposed in this paper.

Sections 5.1–5.3 show three different comparisons of the results obtained using the semi-analytic method
and a classic time-stepping procedure: the linear acceleration version of the Newmark method.

The linear acceleration method has been selected for the resolution of the differential modal equations for
two main reasons. First, because it is a well-known method that serves as a basis for the validation of the new
methodology proposed herein. Secondly, because it provides a useful means of emphasizing that the semi-
analytic approach cannot be affected by any numerical integration error, as the examples below will clearly
illustrate.

Finally, Section 5.4 presents a practical application of the semi-analytic method to the dynamic analysis of a
three-span bridge according to Eurocode 1 [19].

For all the examples, a constant damping ratio for all modes has been assumed, so that zn ¼ z.

5.1. A three-span continuous stepped beam under a single moving load

Fig. 3 shows a three-span beam considered as an example. This example has been used by Hayashikawa and
Watanabe [10], Henchi et al. [12], and Zheng et al. [17]. The length of each span is 20m. The mass per unit
length ðrAÞ is 1000 kg/m, and it is constant for all spans. The flexural stiffness EI is 1.96GNm2 for the end
spans, whereas the stiffness of the central span is twice this value. The damping coefficient z is set to zero. The
beam is subjected to the action of a single load of 9.8 kN. The constant speed of the load is assumed to be
35.57m/s. Each span has been divided into 10 elements of equal length, so that the total number of elements is
30. The number of modes considered in the analysis is 12; the natural frequencies are listed in Table 1.

The aim of this test is to compare the results obtained with the semi-analytic approach and the ones
obtained using a step-by-step method for the case with no damping. Different analyses have been performed
with the Newmark method considering various time steps, and the effects of the step size on the computed
displacements and accelerations have been analysed. The time step used in each analysis is expressed as a
fraction of the minimum period T12 (i.e. the period of the 12th mode).

Fig. 4 shows the acceleration obtained using the semi-analytic solution sampled at T12=10. In the same plot
the acceleration obtained with the Newmark method considering two different time steps is also shown:
T12=25 and T12=150 have been used. Only the beginning of the time-histories is shown in the figure. As can be
seen, very good agreement is found between the three curves.

On the contrary, if one examines the time-histories after some seconds have passed, differences arising from
numerical integration errors can be found. This is shown in Fig. 5. Note that still very good agreement is
found between the semi-analytic solution and the Newmark method for the case with T12=150. By contrast,
the results corresponding to T12=25 are visibly different. This is largely a consequence of the period elongation
error inherent to the linear acceleration method.
EI,�A EI,�A2EI,�A

20 m 20 m 20 m

Fig. 3. A three-span continuous stepped beam.
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Table 1

Natural frequencies ðnjÞ for the three-span continuous stepped beam

j nj (Hz)

1 6.2043

2 7.5812

3 11.9743

4 24.2102

5 26.4434

6 37.2897

7 53.6117

8 56.6805

9 77.0261

10 94.3304

11 98.7615

12 130.7492
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Fig. 4. Acceleration at the mid-span section of the left span for a stepped beam subjected to a moving load: 0ptp0:1. � Semi-analytic

ðT12=10Þ; Newmark ðT12=25Þ; Newmark ðT12=150Þ.
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The use of more sophisticated numerical schemes is expected to give more accurate results for T12=25 or
even longer time steps. However, as stated before, the choice of the Newmark method is adequate for the
purpose of this comparison (other suitable methods could have been used also). Specifically, this purpose is to
highlight that, at any fixed time instant, the response computed using the semi-analytic approach is
independent of the time step; the time step is used only for evaluating the response, but it is not related to the
integration of the equations of motion. When compared with any approximated method, this entails a great
advantage in terms of accuracy and robustness.

Finally, Fig. 6 shows the displacement computed at the mid-span section of the left span. In this case the
semi-analytic solution is evaluated using a step equal to T12, while the integration step used in the Newmark
method is T12=25. Excellent agreement is observed. Though not shown in the figure for the sake of clarity,
such agreement is maintained for a long interval; the reason for this is that higher modes have generally
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Fig. 5. Acceleration at the mid-span section of the left span for a stepped beam subjected to a moving load: 3:05ptp3:15. � Semi-analytic

ðT12=10Þ; Newmark ðT12=25Þ; Newmark ðT12=150Þ.
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negligible influence on the overall displacement, and therefore, the integration errors alter slightly the values
predicted for this magnitude.

5.2. A three-span continuous haunched beam under a single moving load

In order to demonstrate the capabilities of the semi-analytic solution for the analysis of beams with variable
cross-section, the response of the three-span haunched girder shown in Fig. 7 is analysed. The length of each
end span is 18m, whereas the length of the central span is 24m. A linear variation of the depth is defined in the
sections close to the intermediate supports. The density r is 2400 kg/m3. The Young’s modulus E is
30 000MPa. The damping coefficient z is 1%, and a single load value of 9.8 kN, travelling at a speed of 100m/s,
has been considered.

A symmetric mesh has been used. Each end span is divided into 10 elements as follows: the first 6m
(beginning from the end support) are divided into three elements; the linear transition close to the intermediate
support is also divided into three elements; the remaining 6m are divided into four elements. The central span
is meshed using 14 elements as follows: each linear transition is meshed with three elements, while the central
uniform section is meshed with eight elements.

Twelve modes have been considered; the natural frequencies are listed in Table 2. The displacement and
acceleration time-histories at the mid-span section of the left span have been obtained with the Newmark
method and the semi-analytic solution. The time step used in the Newmark method is T12=25, T12 being the
period of the 12th mode. As regards the semi-analytic solution, T12 have been used for evaluating the
displacement shown in Fig. 8 and the acceleration shown in Fig. 10. In Fig. 9 T12=5 has been used in order to
visualize correctly the high-frequency accelerations. As it can be observed, very good agreement is achieved in
all cases.

Since structural damping has been included (z ¼ 0:01 for all modes), a time step equal to T12=25 proves
enough to obtain highly accurate results using the Newmark method. The reason is apparent from Figs. 9 and
10: the higher modes, which are more likely to suffer from numerical integration errors, are damped out after a
certain time, and therefore their influence on the response diminishes (as can be observed, the high-frequency
content present in Fig. 9 has almost disappeared in Fig. 10). One last example of the influence of damping on
numerical integration errors is shown in Section 5.3.
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Fig. 7. A three-span continuous non-uniform beam: (a) elevation; (b) section A–A.
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Fig. 6. Displacement at the mid-span section of the left span for a stepped beam subjected to a moving load. � Semi-analytic ðT12=10Þ;
Newmark ðT12=25Þ.

Table 2

Natural frequencies ðnjÞ for the three-span continuous haunched beam

j nj (Hz)

1 3.9200

2 6.6592

3 9.2386

4 15.8294

5 22.9459

6 26.4045

7 35.1403

8 48.9991

9 53.8260

10 62.0935

11 82.5022

12 91.7342
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5.3. A three-span continuous haunched beam under a train of moving loads

In this section the response of the haunched beam defined in Section 5.2 subjected to a train of moving loads
is analysed. Two different damping ratios have been considered. These are 0.5% and 3%. In this case only the
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Fig. 8. Displacement at the mid-span section of the left span of a haunched beam. � Semi-analytic ðT12Þ; Newmark ðT12=25Þ.
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Fig. 9. Acceleration at the mid-span section of the left span of a haunched beam: 0ptp1. � Semi-analytic ðT12=5Þ; Newmark

ðT12=25Þ.
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contributions of the first six modes of vibration have been taken into account. The train passing over the
bridge consists of five equally spaced loads. The value of each load is 10 kN, and the distance between any two
consecutive loads is 25m. The speed of the train is 70m/s. The response in terms of vertical acceleration has
been computed at the mid-span section of the central span, and the corresponding time-histories are shown in
Figs. 11 and 12.

Fig. 11 shows the accelerations corresponding to a damping ratio equal to 3%. The time step used in the
Newmark method is T6=10. The semi-analytic solution is sampled using the same step. The irregularity of the
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Fig. 10. Acceleration at the mid-span section of the left span of a haunched beam: 2ptp3. � Semi-analytic ðT12Þ; Newmark

ðT12=25Þ.

A.E. Martı́nez-Castro et al. / Journal of Sound and Vibration 294 (2006) 278–297292
curve denotes the influence of higher modes. Nevertheless, an acceptable agreement is obtained between the
semi-analytic and the numerical solution despite of the use of such a long integration step.

At this point it is important to stress that the cause of such a good agreement is damping, as Fig. 12 reveals.
The only difference between the results presented in Fig. 11 and the ones in Fig. 12 is that the former
correspond to 3% damping while the latter correspond to 0.5%. When a low damping ratio such as 0.5% is
used, a long time is required before the influence of higher modes vanishes, and therefore numerical errors
arising from the use of a long integration step are likely to spoil the solution. This kind of behaviour is
precisely what Fig. 12 shows.

5.4. Dynamic analysis of a three-span bridge according to Eurocode 1

The purpose of this example is to illustrate one of the most relevant applications of the semi-analytic
method presented in this paper: the dynamic analysis of high-speed railway bridges.

The last draft of Eurocode 1 [19] states that a dynamic analysis has to be carried out if a continuous bridge
is to be traversed by high-speed trains. Bridges situated in international lines where European interoperability
criteria are applicable must fulfil some particular requirements; specifically, a dynamic analysis of the bridge
subjected to the action of 10 high-speed trains defined in Eurocode 1 ought to be undertaken. The ensemble of
these 10 trains is the High-Speed Load Model, abbreviated through the text of the mentioned code as HSLM.

The bridge considered in this example is a real three-span, high-speed bridge carrying only one track
(actually, the complete structure is formed by two adjacent single-track bridges allowing for the passage of two
trains circulating in opposite directions). The structure is similar to the one shown in Fig. 3, but in this case the
length of the end spans is 25m and the central span is 38m long. Also, the cross-sectional properties are
constant along the bridge: the mass per unit length ðrAÞ is 14435.25 kg/m, the flexural stiffness EI is
110649.6MNm2, and a damping ratio z equal to 1% has been considered. The bridge is designed for an
operating speed of 350 km/h; therefore, according to Eurocode 1, it must be analysed under the action of the
HSLM model at speeds ranging from 40m/s to a maximum of 117m/s (approximately equal to
1:2� 350 ¼ 420 km=h). Steps of 1m/s have been used in the analysis. As regards the Finite Element model,
each span has been divided into 10 elements of equal length.

The contributions of the first five modes have been considered; this ensures that accelerations up to 30Hz
are correctly accounted for, as the Annex 2 of the basic Eurocode [20] imposes. Besides, it has been confirmed
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Fig. 12. Acceleration at the mid-span section of the central span of a haunched beam under a train of moving loads. 0.5% damping.�

Semi-analytic ðT6=10Þ; Newmark ðT6=10Þ.
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Fig. 11. Acceleration at the mid-span section of the central span of a haunched beam under a train of moving loads. 3% damping. � Semi-

analytic ðT6=10Þ; Newmark ðT6=10Þ.
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that in this case the contribution of higher modes to the maximum displacement is negligible. The natural
frequencies of the bridge are listed in Table 3. The time step used for evaluating the response was 0.003 s.

During an actual design process the maximum vertical acceleration and maximum vertical displacement in
several sections of the deck have to be computed for the verification of the Serviceability Limit States. Fig. 13
shows the maximum acceleration at the mid-span section of the central span, one of the most representative
locations along the bridge. The results are presented as a function of the speed. The maximum acceleration has
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Fig. 13. A three-span continuous bridge subjected to the 10 high-speed trains defined in Eurocode 1. Envelope of the absolute values of the

maximum accelerations at the mid-span section of the central span.

Table 3

Natural frequencies ðnjÞ for the three-span continuous beam

j nj (Hz)

1 4.2806

2 8.1957

3 9.5925

4 15.8221

5 27.5136
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been computed for the 10 trains comprised in the HSLM, but only the envelope curve has been depicted. The
maximum value permitted by the Annex 2 of the basic Eurocode [20], considering that the bridge carries a
ballasted track, is 3.5m/s2. As it can be observed, in the central section of the bridge the response does not
exceed this limit.

Attention should be drawn to the elevated number of time-history analyses that must be carried out in order
to complete the dynamic analysis of the bridge. In this example 10 trains and 78 different values of speed have
been considered, which gives a total of 780 time-history analysis. Moreover, these 780 analyses will probably
have to be repeated several times during the design process until the engineer finds a satisfactory solution for
the bridge. Therefore, it is essential for the structural engineer involved in the dynamic assessment of high-
speed bridges to have at his/her disposal a fast and reliable method. The reliability and robustness of the semi-
analytic solution proposed in this paper has been illustrated in the preceding sections. Besides, this has also
proved to be a very fast method: the CPU time required for completing the 780 analysis was 23.39 s in a
standard PC equipped with an AMD Athlon XP 2000 processor and a DDR 266MHz RAM memory.

6. Summary

A semi-analytic solution for the moving load problem in multi-span non-uniform Bernoulli–Euler beams
has been presented. The salient features of this methodology are:
(1)
 The time-dependent modal equations are solved in closed-form, and therefore, the method is highly
accurate and robust, circumventing the main disadvantages of time-stepping schemes. The solution is
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obtained in terms of 10 coefficients per element and per mode. These coefficients are independent of the
speed of the moving loads, and therefore, need not be recalculated if an analysis for different values of
speed is to be carried out.
(2)
 Apart from numerical roundoff errors, the only approximation introduced in the procedure comes from
the spatial discretization of the beam, which is inherent to any Finite Element model. The beam is
discretized using two-noded Bernoulli–Euler elements of variable cross-section. Two degrees of freedom
per node are considered (the vertical displacement and the slope).
(3)
 A time step is required in order to evaluate the solution and obtain a representation of the response time-
history. Nevertheless, the equations of motion are integrated analytically, and therefore the response
computed at any given time instant is not affected by the size of the step.
(4)
 At any fixed time instant, each modal amplitude is computed as the sum of two contributions: first, the one
corresponding to the loads inside the beam (a fixed number of floating point operations per load is
required), and second, a damped-sinusoidal oscillation that accounts for all the loads that have already left
the structure.
(5)
 The semi-analytic procedure presented herein can be applied for the analysis of simply supported as well as
continuous multi-span beams. The method is applicable to continuous beams with any number of spans of
different lengths. Simultaneously, it allows for variable cross-section properties, which are usual in real
structures.
(6)
 Implemented in a FORTRAN computer code running on a standard desktop PC, the method has proved
to be computationally efficient, which makes it particularly useful for the design of actual bridges, allowing
structural engineers to evaluate and compare the performance of different alternatives quickly and
efficiently.
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Appendix A. Expressions for the coefficients of the mass and stiffness elemental matrices

A.1. Mass matrix coefficients

The coefficients of the consistent mass matrix are the following:
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A.2. Stiffness matrix coefficients

The coefficients of the stiffness matrix are the following:
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